10.3 跳台阶
题目链接
题目描述
一只青蛙一次可以跳上 1 级台阶,也可以跳上 2 级。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
解题思路
当 n = 1 时,只有一种跳法:
当 n = 2 时,有两种跳法:
跳 n 阶台阶,可以先跳 1 阶台阶,再跳 n-1 阶台阶;或者先跳 2 阶台阶,再跳 n-2 阶台阶。而 n-1 和 n-2 阶台阶的跳法可以看成子问题,该问题的递推公式为:
1 | class Solution { |
java实现
设跳上 nn 级台阶有 f(n)f(n) 种跳法。在所有跳法中,青蛙的最后一步只有两种情况: 跳上 11 级或 22 级台阶。
当为 11 级台阶: 剩 n-1n−1 个台阶,此情况共有 f(n-1)f(n−1) 种跳法;
当为 22 级台阶: 剩 n-2n−2 个台阶,此情况共有 f(n-2)f(n−2) 种跳法。
f(n)f(n) 为以上两种情况之和,即 f(n)=f(n-1)+f(n-2)f(n)=f(n−1)+f(n−2) ,以上递推性质为斐波那契数列。本题可转化为 求斐波那契数列第 nn 项的值 ,与 面试题10- I. 斐波那契数列 等价,唯一的不同在于起始数字不同。
青蛙跳台阶问题: f(0)=1f(0)=1 , f(1)=1f(1)=1 , f(2)=2f(2)=2 ;
斐波那契数列问题: f(0)=0f(0)=0 , f(1)=1f(1)=1 , f(2)=1f(2)=1 。
作者:jyd
链接:https://leetcode-cn.com/problems/qing-wa-tiao-tai-jie-wen-ti-lcof/solution/mian-shi-ti-10-ii-qing-wa-tiao-tai-jie-wen-ti-dong/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
1 | class Solution { |